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Abstract—A vital part of the Brain, which is responsible for the
transmission of neural messages between the two hemispheres in
the Brain is the Corpus Callosum. Many of the neurodegenerative
diseases are related to the morphological properties of the
Corpus Callosum. Therefore, its study and analysis become an
essential part for the detection of such diseases. Examination
of the Magnetic Resonance Images (MRI) through the mid-
sagittal plane portrays their structure in the most distinguished
manner. This paper carries out a comparative study of three deep
learning models such as CE-Net, UNet++ & MultiResUNet for
the segmentation of Corpus Callosum in the Brain MRI images
using the dataset acquired from open source ABIDE platform.
CE-Net gave the best dice similarity coefficient score of 0.9311,
among all the three Deep Learning models. Thus, the CE-Net
segmentation model can be further used for the classification of
neurological disorders.

Index Terms—Corpus Callosum, CE-Net, Deep Learning, Mag-
netic Resonance Imaging, MultiResUNet, UNet++.

I. INTRODUCTION

One of the most important fields in Image Processing is Im-
age segmentation [1] and is one of the fastest developing areas
in terms of research. As a result, numerous image processing
techniques and algorithms are there for image segmentation.
Segmentation is the process in which an image gets divided
into the foreground, i.e., the object and the background which
are the constituent parts of the image.Mapping of each pixel
of an image into their corresponding class labels is known as
semantic segmentation [2]. Medical Imaging techniques use
electromagnetic radiation for the diagnosis of abnormalities.
No ionizing radiations of X-rays is use in this case. MRI is
a technology based on imaging which is use to produce 3-
D anatomical images. MRI images [3] examine internal body
structures to diagnose brain functions, strokes, tumours and
spinal cord injuries. The applied magnetic field is controlling
an MRI scanner, the alignment of the proton (spin), but before
reaching their original position, these protons get flip by
applying an RF signal. It is use to detect abnormalities as

the rate at which these protons return to their original position
determines whether they are normal or abnormal. Different
modalities of MRI images such as T1, T2 and flair are obtained
by varying the sequence of RF pulse applied and collected.
MRI scans have three different cross-sectional Views namely
axial, sagittal and coronal. Analysis of superior and inferior
portions are done through axial view refer to as a horizontal
view. While the sagittal view use for visualizing left and
right portions, the coronal view, also known as the vertical
view is for anterior and posterior positions. Deep inside the
brain , under the cortex, there is a bundle of nerve fibres
acting as a connecting path between the two hemispheres,
namely, left and right, which is Corpus Callosum. It is also
the largest white matter [4] [5]. Each of these hemispheres
is responsible for controlling the actions of the opposite half
of the body. It mainly integrates the cognitive, motor and
sensory functions between the cerebral cortex of both the
halves. Diseases which affect the structure and biochemistry of
the nervous system are called neurological disorders while the
ones in which are caused due to the death of neurons leading to
irremediable conditions are called neurodegenerative diseases.
Alzheimer’s and autism are one of the most common kinds of
such diseases. Autism spectrum disorder (ASD) is a complex
state of mind which leads to abnormalities in behaviour and
communication. Alzheimer’s is a condition of progressive
memory loss. Segmentation of Corpus Callosum (CC) in
the mid-sagittal plane (MSP) [6] plays a vital role in the
diagnosis of various neurological diseases like Alzheimer’s,
dyslexia, autism as these diseases directly change the shape
and size of CC. The MSP is use for analyzing the CC
because the properties and the boundaries are well-defined.
Tracing of CC in the MRI is a tedious and error-prone task
as it requires an expert for their analysis, i.e. depends on the
operator to a great extent. The task of segmentation of CC
comes as a critical challenge in the field of medical image
processing. The major issues include low contrast of MRI
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scans and non-differentiating CC boundaries [7]. Hence, there
is a need to come up with an automatic, robust and effective
technique for segmentation. A technique based on Bayesian
inference which used sparse representation as well as multi-
atlas voting was proposed by Gilsoon park et al. [8]for the
purpose of medical imaging. On comparing four different
segmentation results, they concluded that Bayesian inference
gave the best segmentation performance with mean dice index
of 93.72% for OASIS dataset. Yue Li et al. demonstrated
Adaptive main shift - automatic CC contour initialization -
active geometric contour (AMS-ACI-GAC) model achieved
accuracy of 0.95, sensitivity of 0.84, F1 score of 0.88 [9].
Another work propagated by Hamza Sharif et al. which used
various machine learning (ML) algorithms such as linear
discriminant analysis (LDA), support vector machine (SVM),
random forest (RF), multilayer perceptron (MLP) and k nearest
neighbour (KNN) and found LDA to be the best with an
average accuracy of 55.93 [4]. A mechanized methodology for
segmentation by localizing the anterior and posterior endpoints
using point-matching was introduced by Wenpeng Gao et al.,
which achieved the endpoint localization error to be 0.85 mm
[10]. Most of the proposed works till date have used ML
algorithms for segmentation in the field of medical imaging.
But the use of ML techniques in this field comes with the
limitation of a high rate of manual dependency as the process
of feature extraction is not automatic. This limitation is solved
using Deep learning techniques [11] as they can recognize
the new features automatically. Our proposed technique for
semantically segmenting corpus callosum is shown in Fig.1

Fig. 1. Block diagram

II. DATASET

Generally, the collection and curation of the medical image
dataset is one of the most strenuous and tedious jobs for the
physicians as well as the researchers. The compilation of such
a data which can be effectively used for the analysis comes as
one of the major challenges due to various problems like the
privacy issues of the patient and small number of input data
for the rare diseases. However, such datasets have an upper
hand over the genomics data or the pathology data as there
are standard formats for such data.
The dataset that has been used is the Autism Brain Imaging
Data Exchange (ABIDE). It is a standard open source dataset
consisting of brain R-fMRI (resting state functional magnetic
resonance imaging) data. It has samples of 1112 participants
from 17 different international sites (for example: NYU, KKI

and SDSU) which includes 539 autism and 573 healthy cases.
The participants lie in the age range of 6.4 to 64 years [12].

III. DEEP LEARNING MODELS

A. UNet++

UNet++ is another network from the Unet family which
holds the Unet architecture as the backbone and is compara-
tively a more powerful architecture for the purpose of medical
image segmentation. It is a deeply-supervised encoder-decoder
network. A series of nested and dense skip pathways connect
the encoder and the decoder sub-networks which help to
reduce the semantic gap between their respective feature maps.
This has been carried out with a belief of easier learning
process by the optimizer when the feature maps from the
two networks are semantically similar. The variation in the
connectivity of the two sub-networks is brought by the re-
designed skip pathways.
Unlike in U-Net where the feature maps of the encoder are
directly received in the decoder [13], the UNet++ model as
shown in Fig. 2 makes them undergo a nested convolution
block. The pyramid level decides the number of convolution
layers. The skip pathway between any two nodes will contain
a dense convolution block. A concatenation layer will precede
each of the convolution layer in it. This is used to fuse
the output of the previous convolution layer of the same
convolution block along with the corresponding output which
has been up- sampled by the lower convolution block. Hence
this brings down the semantic difference between the feature
maps of encoder and corresponding decoder. Since a dense
convolution block is being used along each skip pathway,
therefore, all the previous feature maps accumulate at the
current node [14].

Fig. 2. Unet++ Architecture
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Fig. 3. CE-Net Architecture

B. CE-Net

In Deep Learning, information is generally lost due to
the use of strided convolution or pooling operation. For
segmenting images which are inherently a dense prediction
task as every pixel in an image is being classified, there the
usage of the above operations would significantly decrease
the performance of the deep learning model. To overcome
this challenge, CE-Net uses dilated convolutions along with
residual pooling to preserve spatial information effectively.
CE-Net comprises mainly of three parts as shown in Fig. 3,
first being feature encoder then context extractor and decoder.
Feature encoder is based on pre-trained Resnet34 architecture
on imagenet dataset. It consists of one convolution block,
batch normalization layer and a non-linearity followed by
max-pooling operation. Then it uses starting four feature
encoding layers of resnet without average pooling operations
and densely connected networks. It solves the problem of van-
ishing gradient by introducing skip connections and which also
helps in faster convergence rate. Context Extractor consists
mainly of two blocks namely - Dense Atrous Convolution
block (DAC) and Residual Multi-kernel Pooling block, which
helps in extracting high-level semantic feature maps and
preserves the spatial information among the pixels effectively.

DAC block uses dilated convolution filters with a rate of 1,
3 and 5. This block is formed by adding five different layers
with a receptive field of 1,3,7,9 and 19. The variability of the
receptive field would help in generating more detailed feature
map for large as well as small objects, as large receptive field
convolution would take out more abstract feature knowledge
of large objects in an image while small receptive fields
would help detecting in small objects. Residual pooling block
uses max pooling with a kernel size of 2, 3, 5 and 6 then
utilizing 1x1 convolution to reduce the channel dimension
followed by up-sampling layer through bilinear interpolation
after every pooling layer, the feature maps so obtained are
concatenated with the original feature map after dense atrous
convolution. The decoder is based on vanilla Unet architecture
using skip connections, also help in overcoming information
loss. Up scaling is implemented by transposed convolution
filter rather than interpolation operation since weights for
transpose convolution can be learned and can be more task-
dependent [15].

C. MultiResUnet

This model was proposed to overcome the shortcomings
of Unet model i.e., the semantic gap between encoder and
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decoder and undesirable results on dataset containing images
of different scales. Each block of Unet model is replaced by
MultiRes Block and the skip connections are incorporated with
Res paths. The proposed model as shown in Fig. 4 contains
simple Inception like block with different arrangements so as
to fit in the spatial features from different context sizes. Instead
of using 3×3, 5×5 and 7×7 convolutional filters in parallel,
the bigger filters i.e. 5 x 5 and 7 x 7 which are also the
more expensive filters, are factorized as a succession of 3 x 3
filters with the final feature map being a concatenation of the
maps obtained from each of the filters in cascade form. These
changes were done to aid in the reduction of the parameters
and the memory requirement of the model. Each block also
contains a residual connection followed by a 1 x 1 filter which
conserves the dimensions.
The deviation in the semantic gap between the encoders and
the corresponding decoder blocks is extenuated by passing
the features of encoder through a series of convolutional
layers along with residual connections making the learning
easier. Except for the output layer, rests of the convolutional
layers used are activated by the ReLU (Rectified Linear Unit)
activation function and are batch normalized [16].

Fig. 4. MultiResUnet Architecture

IV. EXPERIMENTAL RESULTS

A. Data Preprocessing

The original dataset consists of MRI scans comprising
sagittal view slices. In order to obtain a generic model, data
augmentation [17] was performed which included operations
like random rotation by 90 degrees, flipping (both horizontal
and vertical), random scaling by a factor sampled from
uniform distribution between 0.9 to 1.1, random shifting
and random Hue Saturation Value (HSV) [15]. These have
been applied to both images as well as the masks. A
total of 1112 data points were obtained after augmentation
which was divided into 912 for training and 200 for validation.

B. Implementation Details

All the models have been trained on the ABIDE dataset
using Pytorch as a Deep Learning framework for 30 epochs
on Nvidia tesla p100 GPU with a capacity of 16 GB virtual

RAM. The version of CUDA used is 10.0. For both validation
and training, a batch size of 8 is taken Adam optimizer
with a learning rate of 2 x 10-4 along with scheduler, which
downscales the initial learning rate by a factor of 2 after
every two patience. Input brain MRI size is considered as
(256x256x3) while the mask size is (256 x 256). Binary Cross-
Entropy (BCE) [18] loss is use as the objective function to
optimize during the training of all the models.

C. Evaluation Criteria

The metrics which is use to evaluate ground truth and
predicted image are as follows :

• Dice Similarity Coefficient(DSC) - It is a metric that is
use to find similarity between two given binary images,
as shown in equation (1).The dice similarity score is an
evaluation metric which is same as the F1 score and is
used to measure the similarity in terms of spatial overlap
between two binary class images. It is preferred over
Intersection over Union (IoU) for the classification of an
unbalanced dataset.

DSC =
2 ∗ tp

2 ∗ tp+ fp+ fn
(1)

• Accuracy (Acc) - It is the ratio of the total number of
exact predictions to the number of overall predictions
made, as shown in equation (2).

Acc =
tp+ tn

tp+ tn+ fp+ fn
(2)

• Sensitivity (Sens) - It is the fraction of actual positive pre-
dictions to the total positive cases, as shown in equation
(3).

Sens =
tp

tp+ fn
(3)

• Specificity (Spec) - It measures the proportion of actual
negative predictions to the total negative instances, as
shown in equation (4).

Spec =
tn

tn+ fp
(4)

Where tp,tn,fp,fn respectively refers to True Positive,
True Negative, False Postive and False Negative.

• Binary Cross-Entropy (BCE) - It is a parameter used
for analyzing the performance of binary classifiers. It is
preferred over Dice loss as it overcomes the problem of
exploding gradients, as shown in equation (5).

BCE = − 1

N

N∑

i=1

(yi log (pi) + (1− yi) log (1− pi))

(5)
where, N is batch size, yi represents ground truth & pi
denotes predicted label.
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Fig. 5. loss curves

TABLE I
VALIDATION METRICS OF MODELS

Model Dice Coefficient Accuracy Sensitivity Specificity

UNet++ 0.7168 0.9936 0.9178 0.9944

CE-Net 0.9311 0.9989 0.9346 0.9994

MultiResUNet 0.0802 0.7971 0.9813 0.7955

V. COMPARATIVE RESULTS

The outcomes reported in Table I infers us that the CE-
Net model outperforms the rest of the Deep Learning models
used for the task of semantic segmentation of corpus callosum.
CE-Net makes use of transfer learning, atrous convolution as
well as spatial pyramid polling layers which helped in faster
and better convergence as compared to other models. Gradient
vanishing can be one of the reasons for the underperformance
of MultiResUnet. The validation result of all the model is
shown in Fig. 6. The Training and validation loss curves
are depicted in Fig. 5. Inferences on Training and Validation
Curves are as follows:

• Training loss curves are steeper than validation loss
curves for all the segmentation models and in due course,
they represented good fit learning curves.

• CE-Net model outperforms other Deep Learning models
in training and validation loss curves due to the inclusion
of Pretrained ResNet34 weights in its encoder which are
further improved via fine-tuning.

• Multi-ResUnet performance is found to be comparatively
low, on account of multiple convolution filter weights in
its residual path which lead to the problem of Vanishing
Gradients

• Unet ++ performs fairly well on training and validation
loss curves with nominal training parameters.

Fig. 6. A : UNet++, B : CE-Net, C : MultiResUnet

VI. CONCLUSION

This paper incorporates the implementation and evaluation
of three different models for segmentation of Corpus Callo-
sum, which is summarised in Table II. The parameters being
used for analyzing the performence of these models are dice
similarity coefficient, accuracy, sensitivity and specificity.
CE-Net was found to give the best results of all of them.
It has a faster rate of convergence, has the highest accuracy,
specificity and dice coefficient. It also comprises fewer number
of trainable parameters as compare to other models.
Further, this model may be used for extracting regional
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TABLE II
SUMMATION OF CE-NET, UNET++ & MULTIRESUNET

Architecture Transfer Learning Trainable Parameters Salient Features

CE-Net Fine-Tuning 38,969,176 Atrous Convolution & Spatial Pyramid Pooling

Multi-ResUnet — 8,125,562 Revised Residual Path

UNet++ — 9,163,329 Series of Dense Nested Convolution

features which can be used for the diagnosis of various
neurodegenerative diseases.
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