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Abstract—Autism spectrum disorders (ASDs) because of it’s
permanent nature, high prevalence, substantial heterogeneity,
and complexity contributes to a redoubtable challenge to the
field of neuroscience and psychiatry. Thus in order to minimize
the requirement of Large-scale multidisciplinary efforts, there is
a dire need for the development of a reliable and efficient model
that gives results at par with the ones offered by the doctors
based on symptomatology. Many significant works have been
propagated for classification of ASD, carried out over the Resting-
State functional MRI (RS-fMRI) data. A novel convolutional
neural network architecture has been developed for substantially
analyzing the similarity in brain neural connectivities of the
two classes, i.e. autism and control that outperforms existing
Machine Learning/Deep Learning methods and produces state-of-
the-art (SOTA) results. We have been able to attain an accuracy
of 0.76 £ 0.039, precision of 0.7863 £ 0.037, and specificity of
0.8169 £ 0.047 using ten-fold Cross-validation policy on the pre-
processed version of RS-fMRI data from the ABIDE-I database.

Index Terms—Autism Spectrum Disorder, Resting-State Func-
tional MRI, Functional Connectivity Matrix, Rectangular Ker-
nels, Evolving Normalisation-Activation

I. INTRODUCTION

In the current scenario, the diagnosis of mental or neuro-
logical disorders is difficult as monitoring a set of prodromes
forms the pure basis for the diagnosis. Reasons like resembling
symptoms and lack of quantitative tests make it a complicated
process. Among a large number of such identified disorders,
Autism Spectrum Disorder or ASD is a condition of brain
development that affects patient ability to perceive and social-
ize with others as they show repetitive behaviours and limited
patterns [1]. A person who has ASD, a developmental disorder
starts to show the first of his symptoms in early childhood
while it lasts throughout his life. Structural abnormalities in
many parts of the brain disrupt connection and the communi-
cation of neurons among themselves, which form the cause of
this disorder. Facts and figures state that one in every sixty-
eight children get affected by ASD with boys being nearly
five times more incline to be diagnosed with it than the girls
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making it one of the fastest-growing developmental disorders
in the United States [2]. Brain scans used for diagnosing
medical issues are of two types i.e. computed tomography
(CT) [3] and magnetic resonance imaging (MRI) based on the
medium used for generating the image. CT Scans use X-Ray
radiations [4], whereas MRIs uses a strong magnetic field for
the same. MRI scans can be further classified as structural
and functional where the former create static images of the
body’s internal anatomy and later generates dynamic images
for detecting metabolic activities of the corresponding organ.
As it is found that ASD influences the global brain network
by blemishing the functional connectivity between multiple
regions of the brain. So the proposed method uses RS-fMRI
images to classify ASD and control subjects as it is a fast,
efficient, and non-invasive technique that evaluates neural pat-
terns. Functional Magnetic Resonance Imaging (fMRI) detects
the active parts of the brain by measuring the change in the
flow of the blood of the corresponding part, as the neuronal
activation and cerebral blood flow are coupled. It is also known
as blood-oxygen-level-dependent fMRI (BOLD fMRI) [5].
Autism spectrum disorders (ASDs) contribute to a redoubtable
challenge to the field of neuroscience as well as psychiatry
due to their permanent nature, high, prevalence, substantial
heterogeneity and complexity. Large-scale multidisciplinary
efforts are required to face such a problem. Looking at the
intensity of the problem posed by this disorder worldwide, We
need a model which is reliable and accurate enough to match
up to the level of doctors. With the significant advancements in
the field of Machine Learning and Neural networks [6], we can
come up with a solution which is reliable enough to parallel
the result of classification between a normal and an autistic
brain given by the doctors. The objective of this research
is to effectively carry out the classification between control
and autistic brain samples. The technique of anticipating the
category/class of input data samples by estimating a mapping
function is termed as classification. The selected dataset for
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Fig. 1: Data Pre-Processing

the intended work is the fMRI data from the ABIDE dataset.
We also intend to propose the model with higher accuracy than
the already existing ones.

II. RELATED WORKS

An appreciable amount of study confirms that the field
of classification of autism spectrum disorder uses Resting-
State functional MRI data (RS-fMRI) and Machine Learn-
ing/Deep Learning algorithms to process the same [7]. To
achieve the objective researchers develop the algorithms which
help in finding the similarity in brain neural connectivity of
autism and control subjects for the appropriate classification.
Abraham et al. [8] proposed an architecture in which pre-
defined brain structural atlases are further improved through
four strategies namely K-Means, Ward’s clustering, Indepen-
dent Component Analysis (ICA) and Multi-Subject Dictionary
Learning (MSDL). The corresponding data-driven atlases are
used to extract time series data and connectivity features. This
technique achieves an accuracy of 0.67 by using lo & [y
regression on Support Vector Classification (SVC) algorithm
and ridge regression with [, penalisation on brain connectivity
matrix. Dvornek et al. [9] uses Recurrent Neural Networks
(RNN) for classifying RS-fMRI time series into healthy or
autistic. In the proposed model, they have achieved the highest
accuracy of 0.685 using Long Short Term Memory (LSTM)
cells with 32 hidden nodes and a dropout (keep probability
rate = 0.5) for regularisation. Parisot et al. [10] leverages
graph theory to represent patients or control subjects as nodes
and similarity among them as edge weights. They have used
Graph Convolutional Networks (GCN) to achieve an accuracy
score of 0.7040 in classifying autism and healthy individuals.
Aghdam et al. [11] came out with a framework that uses a
stack of restricted Boltzmann machines with fully connected
layers to form Deep Belief Network (DBN). In this research,
authors operated on the data comprising both the RS-fMRI
and Structural-MRI(s-MRI) images yielding high sensitivity

of 0.84 with 0.6556, 0.3296 as accuracy and specificity,
respectively in the classification of autism. Heinsfeld et al. [12]
converted functional adjacency matrix (symmetric matrix) into
one-dimensional features with unique values. They utilized
two auto-encoders to extract lower dimensional features and
further to train fully connected layers for classifying autism
from typical control individuals. Its accuracy, sensitivity and
specificity were 0.7, 0.74 and 0.63, respectively. Niu et al. [13]
for classifying autistic patients applied Support vector machine
which yielded 0.693 % 0.059, 0.713 £ 0.059, 0.696 £ 0.072,
0.67340.113 as accuracy, sensitivity, precision and specificity
respectively.They proposed a model Multi-channel Deep At-
tention Neural Networks (DANN). They combined multiple at-
tention units with densely connected layers, which gave better
results than the normal Multi-channel Deep Neural Networks
(DNN) model. Their results are reported as 0.732 £ 0.024,
0.745 4+ 0.115, 0.730 £ 0.053 , 0.717 £ 0.101 being the accu-
racy, sensitivity, precision and specificity respectively. Sherkat-
ghanad et al. [14] used convolution networks accompanying
rectangular sized filters, max pooling, and dropout operations
to classify control and sufferers with an accuracy of 0.7020,
sensitivity as 0.77 and specificity as 0.61. In the past, deep
learning algorithms using fully connected layers and square
sized kernels for convolutional neural networks performed
better than machine learning algorithms. One of the recent
success [14] utilized rectangular sized kernels which served
as our motivation for the current work. We further modified
the architecture [14] and minimized the trainable parameters
which substantially analyzed correlation among connectomes
and consequently outperformed the existing methods.

III. DATASET

Deep learning models require immense amounts of data for
training. Collection and processing of medical images is a
tedious and arduous task because of a small number of input
data as these diseases are rare and sometimes due to privacy
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Fig. 2: Network Architecture

issues of the patients. In order to overcome these problems,
multi-site worldwide collaborated and gathered phenotypic
data and neuroimages obtained from 1,112 patients and created
an open-source dataset, namely Autism Brain Imaging Data
Exchange (ABIDE) [15]. ABIDE I Preprocessed dataset has
been used in our proposed method. It consists of phenotypic
and Resting-State fMRI data of 505 ASD and 530 controls
patients. We have used RS-fMRI data since ASD impacts the
functional connectivity between multiple regions of the brain;
these types of data is beneficial for understanding the neural
bases of ASD.

A. Preproccesing

We have used Connectomes(CPAC) configurable pipeline,
band-pass filtering, and global signal regression as strategies
to preprocess ABIDE-I RS-fMRI data. The pipelining corrects
slice timing, realigns motion artefacts, normalizes voxel signal
intensity, and removes the unwanted variation due to heartbeat,
respiration, and scanner drift (low frequency) from the func-
tional data. Further, Band-pass filtering (0.01 - 0.1 Hz) [15]
was applied to preserve oscillations in functional MRI data be-
tween a specific frequency range for better signal to noise ratio,
detect actual activation from a Region Of Interest (ROI) in the
brain. Global signal regression refers to excluding the global
mean signal generated from each voxel of the brain [16]. It
enhances both the specificity of positive correlations [17] and
anatomical neural connectivity. To obtain specific ROIs, we
utilized Craddock 400 [18] (CC400) brain parcellation atlas
procedure with ROIs equal to 392, which works a mask for
preprocessed RS-fMRI data. Using these, we extract time-
series data and further form a functional connectivity matrix
using person correlation coefficient between each multivariate
time series data. This process is summarised in Figure 1.

IV. NETWORK ARCHITECTURE

Time series multivariate data gets transformed into a func-
tional connectivity matrix of 392 x 392 dimensions, where
each row and column denotes a region of interest (ROI), and

Authorized licensed use limited to: INDIAN INSTITUTE OF TECHNOL&%XEE?QS%%&H%

each cell represents Pearson correlation coefficient along the
corresponding row and column ROIs ( ranges from 1 to -
1 ). The matrix so formed is a symmetric matrix with 1
representing the highest correlation between ROIs and vice
versa. For attaining higher performance in the classification
of Autism Spectrum Disorder using functional connectivity
matrix, we have designed a novel architecture based on
convolutional neural networks. For Classifying images through
Convolutional Neural Networks (CNN), generally small sym-
metric square size filters (3 x 3 or 5 x 5) is used for extracting
valuable features which include information from the neigh-
bouring square pixels [6]. Whereas classifying adjacency brain
connectivity matrix in which each cell correlates with every
other cell, traditional small symmetric square size filters will
not be sufficient. Although through rectangular kernels (with
receptive fields being equal to the number of ROIs), we can
extract useful content related to correlation per ROI, which
serves as an intuitive reason for its improved yielding. We
propose an architecture where convolution is applied in two
stages, the first row by row (1 x 392 filter), then along with
columns (392 x 1 filter) which maps to two hidden dense
layers with the final output as a single neuron differentiating
control and autism subjects. Initial convolutional layer takes
a matrix of 392 x 392 dimension as an input and applies
convolution operation using 1 x 392 dimensional 32 filters;
thus, these filters can extract 32 unique features per ROI. To
further lessen the dimensionality, we convolve the first layer
output by 64 filters of 392 height and one as its width &
comprising of 32 channels(i.e. 32 x 392 x 1), resultant 64 units
feature vector translates to 32 neurons and consequently maps
to a single neuron through fully connected dense layers. The
recent success of Evolving Normalization-Activation layers
[19] in improving convolutional neural networks performance
on classification objectives have inspired us to apply in our
network instead of using batch normalization along with ReLU
as non-linearity. These layers add a slight amount of stochas-
ticity and help in smoothing the optimizing loss curve which
speeds up the training time through its normalizing part, CNN
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can map its input to output effectivity using its non-linearity
function. EvoNorm-S0 is a sample-based (batch independent)
evolving normalization-activation function similar (but equal)
to Swish activation in the numerator and standard deviation of
group normalization in the denominator. Mathematically,

xo(v1X)

EvoNorm — S0 = v+ (D

2
Sw,h,c/g(x)

In the above equation 1, sfv,hyc /g(:c) refers to group vari-

ance, whereas (3,7,v; are learnable parameters and x is an
input. It is scale-invariant to x which means it becomes

either constant zero or ——= when the magnitude of

Sw,h,e/g\ T

x becomes sufficiently large, the value depends upon the sign
of vy. It is visualised in Figure 3. We use the Tanh activation
function for adding non-linearity in the first fully connected
layer while the The sigmoid function operates in the last
dense layer of the network. If the probability score (Sigmoid’s
output) is less than 0.5, then the model classifies subject as
control otherwise as autism sufferer. Since the dataset was
small, a dropout with a keeping probability of 0.4 was applied
after each layer output (except the last layer) to regularize
the model for achieving better generalization. Our Model’s
framework is depicted in Figure 2 and its corresponding
parameters information is provided in Table I.
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TABLE I: Model summary of the proposed CNN architecture

Layer - # Output shape Parameters
Conv2d - 1 [-1, 32, 392, 1] 12,576
EvoNorm2dSO - 2 [-1, 32, 392, 1] 3
Dropout - 3 [-1, 32, 392, 1] 0
Conv2d - 4 [-1, 64, 1, 1] 802,880
EvoNorm2dSoO - 5 [-1, 64, 1, 1] 3
Dropout - 6 [-1,64, 1, 1] 0
Linear - 7 [-1, 32] 2,080
Tanh - 8 [-1, 32] 0
Dropout - 9 [-1, 32] 0
Linear - 10 [-1, 1] 33
Total Parameters 817,575
Total Trainable Parameters 817,575
Total Non-Trainable Parameters 0

Input / Output nodes Intermediate nodes

Fig. 3: Evo Norm Act

V. EXPERIMENTAL SETUP
A. Implementation Details

Model trains on Resting-State Functional MRI data from
the open-source ABIDE association. Pytorch as a framework
along with Nvidia Quadro P5000 GPU (16GB virtual RAM)
was used to train the model. For classifying Typical Control
(TC) and Autism Spectrum Disorder (ASD) patients, we opt
for Binary Cross Entropy function as a network’s loss function,
Adam as its optimizer accompanying a batch size of 32 and
performed ten-fold cross-validation on a dataset of size 1035,
which includes 931 subjects for training and 104 subjects for
validation per fold. As a part of Repeatability, we perform
three repeats for getting a better estimation of the evaluation
parameters used in the model. Model’s input was a brain
connectivity matrix (392 x 392) with a single channel and its
output was a probability score classifying TC & ASD subjects.

B. Evaluation Criteria

Confusion-Matrix, Accuracy, Precision, Sensitivity and
Specificity is computed using ground truth and predicted
labels, whereas receiver operating characteristics by ground
truth labels and predicted output probabilities. We tested
these parameters for each fold from the validation dataset.
Terminologies for the above metrics are:

o Confusion matrix: It is a matrix of 2x2 (binary classifi-
cation) whose cells represent True Negative (TN), False
Positive (FP), False Negative (FN) and True Positive (TP)
values, shown in Figure 4.

Actual
Negative Positive
@
2
5 TN FN
T 2
e
=
T
£z
'z FP TP
=

Fig. 4: Confusion matrix

e Accuracy - Amount of correct predictions from the total
observed data, calculated by equation 2.

t t
Accuracy = ptin 2)
tp+tn+ fp+ fn

e Precision: The part of positive predictions, which is
actually positive, given by equation 3.

ip

3
tp+ fp ©)

Precision =
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TABLE II: Comparing performance values of various models (some entries are: mean =+ standard deviation)

Reference Method Accuracy Sensitivity Precision Specificity
Abraham et al. SVC-11 and SVC-12 Networks 0.67 — — —
[8]
Dvornek et al. LSTM32 0.685 — — —
[9]
Parisot et al. [10] Graph Convolutional Networks 0.7040 — — —
(GCN)
Aghdam et al. Deep belief Network (DBN) 0.6556 0.84 — 0.3296
[11]
Heinsfeld et al. Deep Neural Networks (DNN) 0.7 0.74 — 0.63
[12] and transfer learning
Niu et al. [13] SVM 0.693 £+ 0.059 0.713 £0.059 0.696 £0.072 | 0.673+0.113
Niu et al. [13] Multichannel DNN 0.707 £ 0.027 0.673 £0.088 0.740 £ 0.106 | 0.700 4+ 0.067
Niu et al. [13] Multichannel DANN 0.732 £0.024 0.745 £0.115 0.730 £0.053 | 0.717 +0.101
Sherkatghanad et CNN 0.7020 0.77 — 0.61
al. [14]
Current work CNN 0.76 + 0.039 0.7004 + 0.092 | 0.7863 £ 0.037 | 0.8169 + 0.047

o Sensitivity: The part of actual positive, which the model
correctly predicts, defined by equation 4.

tp
tp+ fn

o Specificity: The part of actual negative, which the model
correctly predicts, calculated by equation 5.

“4)

Sensitivity =

a metric for the whole dataset. Model’s accuracy, sensitivity,
precision and specificity has been compared with the existing
techniques using Machine Learning / Deep Learning within
the Domain of RS-fMRI data using the ABIDE Consortium
database under ten-fold cross-validation policy, depicted in
Table II.

TABLE III: Summary of evaluation metrics using our Model

Speci ficity — tn )
peaiety = 4, + fp Fold | Accuracy | Sensitivity | Precision | Specificity
« Receiver Operating Characteristics: It is a curve between T 083269 08059 08367 08490
True Positive Rate (TPR, y-axis) and False Positive : . . .
. . 2 0.8173 0.8823 0.7758 0.7571
Rate (FPR, x-axis), area under this plot refers to AUC
. . 3 0.7211 0.6078 0.775 0.8301
and higher the AUC (tending to one) better the model
classifies the dataset, as illustrated in Figure 5. 4 0.7596 0.7647 0.75 0.7547
’ 5 0.7980 0.7058 0.8571 0.8867
6 0.7184 0.68 0.7234 0.7547
1 7 0.7572 0.72 0.7659 0.7924
roc 8 0.7087 0.56 0.7778 0.8490
2 9 0.7475 0.62 0.8157 0.8679
Z 10 0.7475 0.66 0.7857 0.8301
8 Mean| 0.7602 0.7004 7863 0.8169
z
a AUC
VII. CONCLUSION
0 FPR (1 -Specificity) . In the current work, a novel architecture using CNN has

Fig. 5: Receiver Operating Characteristics

VI. RESULTS

We have conducted ten-fold cross-validation on the pre-
processed RS-fMRI ABIDE dataset. Results are reported by
confusion matrix in Figure 7, receiver operating characteristics
in Figure 6 and other testing parameters for each fold as
represented in Table III. A unique confusion is computed by
summing the confusion matrices of each fold, representing

been proposed for classifying autism and control patients
using RS-fMRI data which outperforms existing Machine
Learning/Deep Learning methods and produces state-of-the-
art results in terms of accuracy (0.76 £ 0.039), precision
(0.7863 £ 0.037) and specificity (0.8169 + 0.047) using a
ten-fold Cross-validation policy. The preprocessed version of
RS-fMRI data from the ABIDE-I database was used to train
the model. The model, along with high dropout and fewer
number of trainable parameters, was able to generalize well
despite being trained on a small dataset. Rectangular kernels
with a receptive field equal to the total number of regions of
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interest (included in RS-fMRI) can extract valuable features
as compared to small symmetric filters. The Evo-Norm layer
not only sped up the optimization aim but also was scale
invariant to the input. Aggregating the techniques as mentioned
above, a robust classifier was build for classifying control and
autism subjects. Sparse quantity and the bias present in data
confined our model’s performance which seems to be the only
limitation at the moment. Thus as a part of future work, Data
augmentation process and better regularization techniques can
be used for RS-fMRI data to enhance the above-stated results
further. Moreover, 3-D convolutional neural networks can also
be utilized for classifying healthy subjects and autism patients
through Structural MRI Images.

Receiver operating characteristic
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